Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.450
Filtrar
1.
Neotrop Entomol ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656588

RESUMEN

Experiments are useful scientific tools for testing hypotheses by manipulating variables of interest while controlling for other factors that can bias or confuse the results and their interpretation. To ensures accuracy and reproducibility, experiments must have transparent and repeatable methodologies. Due to the importance of shredder invertebrates in organic matter processing, carbon cycling, and nutrient cycling, we tested experimentally the effect of different methodological approaches in microcosm experiments on the consumption and survival of shredders. We found that the shredder species, the presence or absence of the case, and the use or non-use of air-pumps in the microcosms did not affect shredder performance (i.e., consumption and survival). Furthermore, the type of water (stream or bottled) did not affect shredder performance. On the other hand, the amount of light had a negative effect on shredder performance, with constant light (i.e., 24 h) reducing shredder consumption and survival. Our results demonstrate that the use of different methodologies does not always result in changes in outcomes, thus ensuring comparability. However, luminosity is a critical factor that deserves attention when conducting microcosm experiments. Our findings provide valuable insights that can assist researchers in designing experiments with shredders from neotropical streams and conducting systematic reviews and meta-analyses.

2.
PeerJ ; 12: e17214, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646489

RESUMEN

Many native insects have evolved defenses against native predators. However, their defenses may not protect them from non-native predators due to a limited shared history. The American bullfrog, Aquarana catesbeiana (Anura: Ranidae), which has been intentionally introduced to many countries, is believed to impact native aquatic animals through direct predation. Adults of whirligig beetles (Coleoptera: Gyrinidae), known for swimming and foraging on the water surface of ponds and streams, reportedly possess chemical defenses against aquatic predators, such as fish. Although whirligig beetles potentially encounter both bullfrogs and other frogs in ponds and lakes, the effectiveness of their defenses against frogs has been rarely studied. To assess whether whirligig beetles can defend against native and non-native frogs, we observed the behavioral responses of the native pond frog, Pelophylax nigromaculatus (Anura: Ranidae), and the invasive non-native bullfrog, A. catesbeiana, to native whirligig beetles, Gyrinus japonicus and Dineutus orientalis, in Japan. Adults of whirligig beetles were provided to frogs under laboratory conditions. Forty percent of G. japonicus and D.orientalis were rejected by P. nigromaculatus, while all whirligig beetles were easily consumed by A. catesbeiana. Chemical and other secondary defenses of G. japonicus and D. orientalis were effective for some individuals of P. nigromaculatus but not for any individuals of A. catesbeiana. These results suggest that native whirligig beetles suffer predation by invasive non-native bullfrogs in local ponds and lakes in Japan.


Asunto(s)
Escarabajos , Especies Introducidas , Conducta Predatoria , Animales , Escarabajos/fisiología , Conducta Predatoria/fisiología , Japón , Ranidae , Rana catesbeiana
3.
Chemosphere ; 357: 142036, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38615963

RESUMEN

Arthropods represent an entry point for pesticide transfers in terrestrial food webs, and pesticide accumulation in upper chain organisms, such as predators can have cascading consequences on ecosystems. However, the mechanisms driving pesticide transfer and bioaccumulation in food webs remain poorly understood. Here we review the literature on pesticide transfers mediated by terrestrial arthropods in food webs. The transfer of pesticides and their potential for bioaccumulation and biomagnification are related to the chemical properties and toxicokinetic of the substances, the resistance and detoxification abilities of the contaminated organisms, as well as by their effects on organisms' life history traits. We further identify four critical areas in which knowledge gain would improve future predictions of pesticides impacts on terrestrial food webs. First, efforts should be made regarding the effects of co-formulants and pesticides mixtures that are currently understudied. Second, progress in the sensitivity of analytical methods would allow the detection of low concentrations of pesticides in small individual arthropods. Quantifying pesticides in arthropods preys, their predators, and arthropods or vertebrates at higher trophic level would bring crucial insights into the bioaccumulation and biomagnification potential of pesticides in real-world terrestrial food webs. Finally, quantifying the influence of the trophic structure and complexity of communities on the transfer of pesticides could address several important sources of variability in bioaccumulation and biomagnification across species and food webs. This narrative review will inspire future studies aiming to quantify pesticide transfers in terrestrial food webs to better capture their ecological consequences in natural and cultivated landscapes.

4.
Arch Insect Biochem Physiol ; 115(4): e22114, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38659314

RESUMEN

The insect cuticle plays a key role in maintaining the insect's physiological function and behavior. Herein, the yellow-y protein is required to produce black melanin, and is expressed in a pattern that correlates with the distribution of this pigment. However, yellow-y can also have other functions, for instance, in insect behavior, but not much is known. In this study, we have studied the yellow-y gene in one important model and pest species, namely the German cockroach (Blattella germanica), which is to our knowledge the first time reported. In essence, we identified the yellow-y gene (BgY-y) and characterized its function by using RNA interference (RNAi). Silencing of BgY-y gene led to different developmental abnormalities (body weight and wings) in both genders. Specifically, there was an abundant decrease in melanin, turning the body color in pale yellow and the cuticle softer and more transparent. Interestingly, we also observed that the knockdown of BgY-y impaired the male cockroaches to display a weaker response to female-emitted contact sex pheromones, and also that the oviposition ability was weakened in the RNAi females. This study comprehensively analyzed the biological functions of the yellow-y gene in German cockroaches from the perspectives of development, body color, courtship behavior and oviposition, and as a consequence, this may opens new avenues to explore it as a novel pest control gene.


Asunto(s)
Blattellidae , Proteínas de Insectos , Oviposición , Pigmentación , Interferencia de ARN , Animales , Blattellidae/genética , Blattellidae/fisiología , Femenino , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Masculino , Pigmentación/genética , Cortejo , Melaninas/metabolismo , Conducta Sexual Animal
5.
Zookeys ; 1197: 115-126, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38651112

RESUMEN

Mastotermitidae, the first-diverging extant family of termites, has only one relic extant species; however, this family had greater richness during the Mesozoic and Cenozoic eras. Fossil termites from the Cretaceous provide information on the early evolution of termites and the transition between extinct families. Herein, two new Mastotermitidae species found in upper Cretaceous (Cenomanian) Kachin amber are reported. One is a female imago described as Angustitermesreflexusgen. et sp. nov. and assigned to the subfamily Mastotermitinae. The other is Mastotermesreticulatussp. nov., which is described from an isolated forewing. With the comparison especially of the antenna and venation, these new mastotermitids further increase our knowledge of the diversity and morphology of Mastotermitidae during the Mesozoic.

6.
Insects ; 15(4)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38667402

RESUMEN

Factors responsible for species distribution of benthic macroinvertebrates, including responses at different spatial scales, have been previously investigated. The aim of the present research was to review the most relevant factors explaining chironomid species distribution focusing on factors operating at different spatial scales, such as latitude, longitude, altitude, substrate, salinity, water temperature, current velocity, conductivity, acidity, dissolved oxygen, nutrient content etc. acting at regional levels and at a large or small water basin level. Data including chironomid species abundances from different lentic and lotic waters in Italy and other surrounding countries were analyzed using partial canonical correspondence analysis (pCCA) and multiple discriminant analysis (DISCR). Spatial analyses, including univariate Moran's I correlograms, multivariate Mantel correlograms and Moran's eigenvector maps (MEMs), were thereafter carried out. The results showed that habitat type, including different types of lotic waters (i.e., kryal, crenal, rhithral, potamal) and different lake types (i.e., littoral, sublittoral, profundal zones), is the most significant factor separating chironomid assemblages, while spatial factors act only as indirect influencers.

7.
Insects ; 15(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38667408

RESUMEN

The Asian longhorned beetle (ALB) causes substantial economic and ecological losses, thus, an environmentally friendly management strategy is needed. Here, we propose high trunk truncation (HTT), the removal of the above 200 cm portion of trees, as a sustainable management strategy to control ALB. To examine the hypothesis, an initial step involved the assessment of various biological characteristics of ALB. Subsequently, a controlled field experiment was carried out utilizing HTT. Finally, HTT was applied in two additional ALB infestation regions. The results of the study of the biological characteristics of ALB showed that 76.31-78.88% of frass holes and 85.08-87.93% of emergence holes were located on branches above 200 cm. Adults preferred to feed on branches 2-3 cm in diameter, ALB eggs were predominantly laid on 5 cm branches, and both were primarily located above 200 cm. These results revealed a correlation between the number of ALBs and the tree crown height. The controlled field experiment showed that the number of ALBs was significantly decreased when the HTT strategy was implemented: approximately 90% of frass holes and 95% of adults were eradicated by HTT compared with the control. Different field surveys involving HTT have shown similar results. These findings provide valuable insights into a sustainable and efficient management strategy for reducing the number of ALBs.

8.
Insects ; 15(4)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38667417

RESUMEN

By-product-based diets have the potential to improve the environmental and economic sustainability of Tenebrio molitor (Linnaeus, 1758) production. However, evaluations of the efficacy of new diets are generally focused on larval performance, while the effect on adults is poorly understood. This aim of this study was to evaluate diets enriched with tomato pomace over a complete breeding cycle. The results showed that when used as an oviposition substrate, all the tested diets, including tomato pomace (T), outperformed the control bran-yeast diet (WY, 95:5 ratio), possibly due to the presence of cholesterol and linoleic acid. The adults fed with the bran-tomato pomace-brewer's spent grain diet (WTB, 50:27:23 ratio), the bran-tomato pomace-yeast diet (WTY, 50:41:9 ratio), and the bran-tomato pomace diet (WT, 50:50 ratio) produced significantly more larvae than those fed with the WY diet. The WTB diet (despite being yeast-free) performed similarly to the WY control diet during the subsequent larval growth phase, making it suitable for the entire production cycle. In conclusion, the results show that tomato pomace can be used a valid by-product in the formulation of efficient diets for the breeding of T. molitor and also provide an alternative to expensive yeast.

9.
Insects ; 15(4)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38667423

RESUMEN

Hermetia illucens has received a lot of attention as its larval stage can grow on organic substrates, even those that are decomposing. Black soldier fly breeding provides a variety of valuable products, including frass, a mixture of larval excrements, larval exuviae, and leftover feedstock, that can be used as a fertilizer in agriculture. Organic fertilizers, such as frass, bringing beneficial bacteria and organic materials into the soil, improves its health and fertility. This comprehensive review delves into a comparative analysis of frass derived from larvae fed on different substrates. The composition of micro- and macro-nutrients, pH levels, organic matter content, electrical conductivity, moisture levels, and the proportion of dry matter are under consideration. The effect of different feeding substrates on the presence of potentially beneficial bacteria for plant growth within the frass is also reported. A critical feature examined in this review is the post-application beneficial impacts of frass on crops, highlighting the agricultural benefits and drawbacks of introducing Hermetia illucens frass into cultivation operations. One notable feature of this review is the categorization of the crops studied into distinct groups, which is useful to simplify comparisons in future research.

10.
Sci Total Environ ; : 172521, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38641095

RESUMEN

Agricultural practitioners, researchers and policymakers are increasingly advocating for integrated pest management (IPM) to reduce pesticide use while preserving crop productivity and profitability. Using selective pesticides, putatively designed to act on pests while minimising impacts on off-target organisms, is one such option - yet evidence of whether these chemicals control pests without adversely affecting natural enemies and other beneficial species (henceforth beneficials) remains scarce. At present, the selection of pesticides compatible with IPM often considers a single (or a limited number of) widely distributed beneficial species, without considering undesired effects on co-occurring beneficials. In this study, we conducted standardised laboratory bioassays to assess the acute toxicity effects of 20 chemicals on 15 beneficial species at multiple exposure timepoints, with the specific aims to: (1) identify common and diverging patterns in acute toxicity responses of tested beneficials; (2) determine if the effect of pesticides on beetles, wasps and mites is consistent across species within these groups; and (3) assess the impact of mortality assessment timepoints on International Organisation for Biological Control (IOBC) toxicity classifications. Our work demonstrates that in most cases, chemical toxicities cannot be generalised across a range of beneficial insects and mites providing biological control, a finding that was found even when comparing impacts among closely related species of beetles, wasps and mites. Additionally, we show that toxicity impacts increase with exposure length, pointing to limitations of IOBC protocols. This work challenges the notion that chemical toxicities can be adequately tested on a limited number of 'representative' species; instead, it highlights the need for careful consideration and testing on a range of regionally and seasonally relevant beneficial species.

11.
Mol Genet Genomics ; 299(1): 46, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642133

RESUMEN

Adenosine-to-inosine (A-to-I) RNA editing, resembling A-to-G mutation, confers adaptiveness by increasing proteomic diversity in a temporal-spatial manner. This evolutionary theory named "proteomic diversifying hypothesis" has only partially been tested in very few organisms like Drosophila melanogaster, mainly by observing the positive selection on nonsynonymous editing events. To find additional genome-wide evidences supporting this interesting assumption, we retrieved the genomes of four Drosophila species and collected 20 deep-sequenced transcriptomes of different developmental stages and neuron populations of D. melanogaster. We systematically profiled the RNA editomes in these samples and performed meticulous comparative genomic analyses. Further evidences were found to support the diversifying hypothesis. (1) None of the nonsynonymous editing sites in D. melanogaster had ancestral G-alleles, while the silent editing sites had an unignorable fraction of ancestral G-alleles; (2) Only very few nonsynonymous editing sites in D. melanogaster had corresponding G-alleles derived in the genomes of sibling species, and the fraction of such situation was significantly lower than that of silent editing sites; (3) The few nonsynonymous editing with corresponding G-alleles had significantly more variable editing levels (across samples) than other nonsynonymous editing sites in D. melanogaster. The proteomic diversifying nature of RNA editing in Drosophila excludes the restorative role which favors an ancestral G-allele. The few fixed G-alleles in sibling species might facilitate the adaptation to particular environment and the corresponding nonsynonymous editing in D. melanogaster would introduce stronger advantage of flexible proteomic diversification. With multi-Omics data, our study consolidates the nature of evolutionary significance of A-to-I RNA editing sites in model insects.


Asunto(s)
Drosophila melanogaster , ARN , Animales , ARN/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteómica , Edición de ARN/genética , Adenosina/genética , Adenosina/metabolismo , Inosina/genética , Inosina/metabolismo , Genómica , Drosophila/genética
12.
Neotrop Entomol ; 53(2): 254-276, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38575843

RESUMEN

Cylindrostethus Fieber, 1861 is one of the most striking genera of water striders (Insecta: Hemiptera: Gerridae) and has Pantropical distribution. Members of this group can be recognized by the very long, cylindrical body; the short antennomere IV; the short labium not reaching the mesosternum; and by characteristics of the abdomen of males and females. Although Neotropical representatives of the genus have been revised, there are pending taxonomic issues related to this fauna, and that of the Eastern Hemisphere has been barely studied in recent years. Here, we present a short note about the authorship of Cylindrostethus, an updated key to all species of the genus, a new synonymy, and the description of a previously unknown macropterous male of C. hungerfordi Drake and Harris.


Asunto(s)
Hemípteros , Heterópteros , Femenino , Masculino , Animales , Insectos , Agua
13.
Mol Nutr Food Res ; : e2300911, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38629315

RESUMEN

SCOPE: Arginine kinase (AK) is an important enzyme for energy metabolism of invertebrate cells by participating in the maintenance of constant levels of ATP. However, AK is also recognized as a major allergen in insects and crustaceans capable of cross-reactivity with sera of patients sensitized to orthologous proteins. In the perspective of introducing insects or their derivatives in the human diet in Western world, it is of primary importance to evaluate possible risks for allergic consumers. METHODS AND RESULTS: This work reports the identification and characterization of AK from Hermetia illucens commonly known as the black soldier fly, a promising insect for human consumption. To evaluate allergenicity of AK from H. illucens, putative linear and conformational epitopes are identified by bioinformatics analyses, and Dot-Blot assays are carried out by using sera of patients allergic to shrimp or mites to validate the cross-reactivity. Gastrointestinal digestion reduces significantly the linear epitopes resulting in lower allergenicity, while the secondary structure is altered at increasing temperatures supporting the possible loss or reduction of conformational epitopes. CONCLUSION: The results indicate that the possible allergenicity of AK should be taken in consideration when dealing with novel foods containing H. illucens or its derivatives.

14.
Mol Phylogenet Evol ; 195: 108071, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38579933

RESUMEN

Phylogenomic analysis based on nucleotide sequences of 398 nuclear gene loci for 67 representatives of the leafhopper genus Neoaliturus yielded well-resolved estimates of relationships among species of the genus. Subgenus Neoaliturus (Neoaliturus) is consistently paraphyletic with respect to Neoaliturus (Circulifer). The analysis revealed the presence of at least ten genetically divergent clades among specimens consistent with the previous morphology-based definition of the leafhopper genus "Circulifer" which includes three previously recognized "species complexes." Specimens of the American beet leafhopper, N. tenellus (Baker), collected from the southwestern USA consistently group with one of these clades, comprising specimens from the eastern Mediterranean. Some of the remaining lineages are consistent with ecological differences previously observed among eastern Mediterranean populations and suggest that N. tenellus, as previously defined, comprises multiple monophyletic species, distinguishable by slight morphological differences.


Asunto(s)
Beta vulgaris , Bagres , Hemípteros , Animales , Filogenia , Hemípteros/genética
16.
Nutr Rev ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568990

RESUMEN

According to the United Nations, more than 800 million people are exposed to starvation. It is predicted that the world population will face much more serious starvation for reasons such as global warming, diseases, economic problems, rapid urbanization, and destruction of agricultural areas and water resources. Thus, there are significant hesitations about the sustainability of food resources, and the search for alternative food sources has increased. One of the leading alternative food sources is insects. Although the use of edible insects has been accepted in some areas of the world, entomophagy is not preferred in some countries due to sociocultural conditions, health concerns, neophobia, and entomophobia. Many people do not accept the direct consumption of raw insects, but insects can be transformed into more preferred forms by using different cooking techniques. Some ground edible insects are satisfactory in terms of nutritional value and have a reasonable level of acceptability when added to products such as bread, tortilla, and pasta in varying percentages. The world market value of edible insects was estimated to be US$3.2 million in 2021 and US$17.6 billion in 2032. In this review, the current and future situation of insects as an alternative food source is comprehensively discussed.

17.
J Comp Physiol B ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573502

RESUMEN

The innate immune system, a cornerstone for organismal resilience against environmental and microbial insults, is highly conserved across the evolutionary spectrum, underpinning its pivotal role in maintaining homeostasis and ensuring survival. This review explores the evolutionary parallels between mammalian and insect innate immune systems, illuminating how investigations into these disparate immune landscapes have been reciprocally enlightening. We further delve into how advancements in mammalian immunology have enriched our understanding of insect immune responses, highlighting the intertwined evolutionary narratives and the shared molecular lexicon of immunity across these organisms. Therefore, this review posits a holistic understanding of innate immune mechanisms, including immunometabolism, autophagy and cell death. The examination of how emerging insights into mammalian and vertebrate immunity inform our understanding of insect immune responses and their implications for vector-borne disease transmission showcases the imperative for a nuanced comprehension of innate immunity's evolutionary tale. This understanding is quintessential for harnessing innate immune mechanisms' potential in devising innovative disease mitigation strategies and promoting organismal health across the animal kingdom.

18.
Environ Monit Assess ; 196(5): 422, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38570386

RESUMEN

The exposure to arsenic and mercury in various insect trophic guilds from two mercury mining sites in Mexico was assessed. The two study sites were La Laja (LL) and La Soledad (LS) mines. Additionally, a reference site (LSR) was evaluated for LS. The terrestrial ecosystem was studied at LL, whereas both the terrestrial ecosystem and a stream called El Cedral (EC) were assessed at LS. The study sites are situated in the Biosphere Reserve Sierra Gorda (BRSG). Mercury vapor concentrations were measured with a portable analyzer, and concentrations of arsenic and mercury in environmental and biological samples were determined through atomic absorption spectrophotometry. Both pollutants were detected in all terrestrial ecosystem components (soil, air, leaves, flowers, and insects) from the two mines. The insect trophic guilds exposed included pollinivores, rhizophages, predators, coprophages, and necrophages. In LS, insects accumulated arsenic at levels 29 to 80 times higher than those found in specimens from LSR, and 10 to 46 times higher than those from LL. Similarly, mercury exposure in LS was 13 to 62 times higher than LSR, and 15 to 54 times higher than in LL. The analysis of insect exposure routes indicated potential exposure through air, soil, leaves, flowers, animal prey, carrion, and excrement. Water and sediment from EC exhibited high levels of arsenic and mercury compared to reference values, and predatory aquatic insects were exposed to both pollutants. In conclusion, insects from mercury mining sites in the BRSG are at risk.


Asunto(s)
Arsénico , Contaminantes Ambientales , Mercurio , Animales , Mercurio/análisis , Arsénico/análisis , Ecosistema , Monitoreo del Ambiente , México , Insectos , Contaminantes Ambientales/análisis , Minería , Suelo
19.
Sci Rep ; 14(1): 7834, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570597

RESUMEN

Potassium channels belong to the super family of ion channels and play a fundamental role in cell excitability. Kir channels are potassium channels with an inwardly rectifying property. They play a role in setting the resting membrane potential of many excitable cells including neurons. Although putative Kir channel family genes can be found in the Apis mellifera genome, their functional expression, biophysical properties, and sensitivity to small molecules with insecticidal activity remain to be investigated. We cloned six Kir channel isoforms from Apis mellifera that derive from two Kir genes, AmKir1 and AmKir2, which are present in the Apis mellifera genome. We studied the tissue distribution, the electrophysiological and pharmacological characteristics of three isoforms that expressed functional currents (AmKir1.1, AmKir2.2, and AmKir2.3). AmKir1.1, AmKir2.2, and AmKir2.3 isoforms exhibited distinct characteristics when expressed in Xenopus oocytes. AmKir1.1 exhibited the largest potassium currents and was impermeable to cesium whereas AmKir2.2 and AmKir2.3 exhibited smaller currents but allowed cesium to permeate. AmKir1 exhibited faster opening kinetics than AmKir2. Pharmacological experiments revealed that both AmKir1.1 and AmKir2.2 are blocked by the divalent ion barium, with IC50 values of 10-5 and 10-6 M, respectively. The concentrations of VU041, a small molecule with insecticidal properties required to achieve a 50% current blockade for all three channels were higher than those needed to block Kir channels in other arthropods, such as the aphid Aphis gossypii and the mosquito Aedes aegypti. From this, we conclude that Apis mellifera AmKir channels exhibit lower sensitivity to VU041.


Asunto(s)
Canales de Potasio de Rectificación Interna , Animales , Abejas/genética , Canales de Potasio de Rectificación Interna/genética , Potenciales de la Membrana/fisiología , Potasio , Clonación Molecular , Isoformas de Proteínas/genética , Cesio
20.
Artículo en Inglés | MEDLINE | ID: mdl-38561538

RESUMEN

The increasing demands for resources driven by the global population necessitate exploring sustainable alternatives for affordable animal protein over the use of traditional protein sources. Insects, with their high protein content, offer a promising solution, especially when reared on agricultural post-distillation residues for enhanced sustainability and cost-effectiveness. We assessed the development of Zophobas morio (F.) (Coleoptera: Tenebrionidae) larvae on diets enriched with essential oils and post-distillation residues from Greek aromatic and medicinal plants. Two aromatic plant mixtures (A and B) were examined. Mixture A consisted of post-distillation residues, while Mixture B incorporated these residues along with essential oils. Insect rearing diets were enriched with different proportions (10, 20, and 30 %) of these mixtures, with wheat bran serving as the control. Enrichment positively influenced larval development without compromising survival. Larval weight remained unchanged with Mixture A, but improved with Mixture B. No adverse effects were detected in the case of the enriched diets, although higher concentrations of Mixture B prolonged development time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...